

POWER, PRODUCTIVITY, AND GROWTH ELASTICITY

How Electricity Access, Reliability, and Quality Shape Industrial Output and Economic Development

A Market Research Report

January 2025

Prepared for Publication on MarketResearch.com

Strategic Market Research Division

Geographic Scope: Global with regional focus on developing economies

Time Horizon: 2000–2024 (historical); outlook to 2030

Primary Data Sources: World Bank, IEA, ESMAP, Academic Literature

Table of Contents

Section	Description
Executive Summary	Key findings and implications
Key Findings	12 quantified insights with sources
1. Introduction	Research framework and methodology
2. Literature Review	Energy-development nexus
3. Electricity Access	Access patterns and economic outcomes
4. Grid Reliability	Outages, productivity losses, elasticity
5. Power Quality	Voltage, frequency, and hidden costs
6. Sectoral Analysis	Manufacturing, services, agriculture
7. Case Studies	India, Bangladesh, Nigeria, Kenya
8. Policy Implications	Recommendations by stakeholder
9. Investment Needs	Financing requirements to 2030
10. Methodology	Data sources and limitations
References & Appendix	Citations and glossary

List of Exhibits

Exhibit	Title
1	Electricity Access Rate vs. GDP per Capita (2022)
2	Power Outages and Productivity Losses by Country
3	Electricity Access Gains vs. Economic Growth
4	Grid Reliability by Region (SAIDI/SAIFI)
5	Industrial Output Elasticity to Electricity by Development Stage
6	Power Quality Issues by Region — Firm Impact
7	Backup Generation — Prevalence and Cost
8	Electricity Access Progress, 2000–2023
9	Energy Intensity vs. Development Level
10	Electricity Investment Needs for Universal Access by 2030
11	Estimated Productivity Gains from Reliability Improvements
12	Conceptual Framework: Electricity-Growth Transmission Channels
13	Comparative Electrification Policy Approaches

Executive Summary

Research Objective

This report investigates the relationship between electricity infrastructure and economic development, with particular emphasis on three dimensions often conflated in policy discourse: **access** (connection to electricity supply), **reliability** (consistency of supply), and **quality** (voltage stability, frequency regulation, and power factor). While considerable research has examined electricity access as a development enabler, this report argues that reliability and quality are equally—and in some contexts more—determinative of economic outcomes.

Principal Findings

- 1. Access is necessary but not sufficient.** While electricity access exhibits strong correlation with economic development ($r = 0.78$ between access rate and log GDP per capita across 190 countries), access alone does not guarantee productivity gains. Countries that have achieved near-universal access with unreliable supply, such as Nigeria (59.5% access, 32.8 outages/month), show limited industrial development benefits compared to countries with lower formal access but higher effective reliability.¹
- 2. Reliability losses impose substantial economic costs.** World Bank Enterprise Survey data indicate that manufacturing firms in Sub-Saharan Africa lose 8.9% of annual sales to power outages on average, compared to 4.2% in South Asia, 2.1% in East Asia, and less than 0.5% in OECD economies. Across developing economies, power outages cost an estimated \$80–120 billion annually in lost output.²
- 3. Power quality issues compound reliability losses.** Beyond outages, voltage fluctuations, power surges, and frequency instability damage equipment, reduce process efficiency, and shorten asset lifespans. An estimated 78% of manufacturing firms in Sub-Saharan Africa report voltage fluctuation problems, compared to 45% in South Asia and 25% in Latin America.³
- 4. Industrial output exhibits significant elasticity to electricity.** Cross-country regression analysis suggests output elasticities of 0.45–0.85 in the manufacturing sector, meaning a 10% increase in reliable electricity supply is associated with a 4.5–8.5%

¹ World Bank World Development Indicators 2024; World Bank Enterprise Survey Nigeria 2021.

² World Bank Enterprise Surveys (2019–2023). Manufacturing and formal services firms. Available at: <https://www.enterprisesurveys.org/>

³ World Bank ESMAP; Enterprise Surveys (2019–2023). Voltage fluctuation data from infrastructure module.

increase in manufacturing output. Elasticities are highest in low-income countries and decline with development.⁴

5. Self-generation is an expensive adaptation. Firms respond to unreliable grids by investing in backup generators, which cost 3–5× more per kWh than grid electricity. In Nigeria, 85% of manufacturing firms own or share generators; self-generation adds an estimated \$0.27/kWh to effective electricity costs.⁵

6. Universal access requires \$430–500 billion in investment by 2030. Achieving Sustainable Development Goal 7 (universal electricity access by 2030) requires annual investment of approximately \$50–60 billion, roughly double current levels. Sub-Saharan Africa accounts for the largest share of this gap.⁶

Policy Implications

The research findings support several policy conclusions:

- **Target reliability, not just connections.** Electrification programs should incorporate reliability metrics (SAIDI, SAIFI) as key performance indicators, not merely connection counts.
- **Invest in transmission and distribution.** Generation capacity expansion without corresponding T&D investment creates reliability constraints. Distribution losses in Sub-Saharan Africa average 18% versus 6% in OECD economies.⁷
- **Address power quality systematically.** Voltage regulation equipment, capacitor banks, and modern protection systems should be incorporated into grid modernization programs.
- **Leverage off-grid and mini-grid solutions strategically.** In remote areas with low load density, decentralized solutions may offer superior reliability at lower cost than long-distance grid extension.
- **Reform utility governance and pricing.** Chronic underfunding of maintenance and investment reflects tariffs below cost-recovery levels and governance weaknesses. Sustainable electrification requires financially viable utilities.

⁴ Allcott, Collard-Wexler, and O’Connell (2016); Fisher-Vanden et al. (2015); Rud (2012). Synthesis of elasticity estimates.

⁵ World Bank Enterprise Survey Nigeria 2021. Generator cost based on diesel consumption estimates.

⁶ IEA Africa Energy Outlook 2022; ESMAP. Investment requirements for SDG7 achievement.

⁷ World Bank WDI 2024. Distribution losses data.

So What: Business and Investment Implications

For **manufacturers and industrial investors**, power reliability should be a primary site selection criterion. Markets with SAIDI greater than 100 hours annually impose material costs that may offset labor or land cost advantages.

For **energy infrastructure investors**, opportunities exist in grid modernization, distributed generation, and storage solutions across emerging markets. Returns depend critically on regulatory frameworks and offtaker creditworthiness.

For **development finance institutions**, blended finance approaches that combine concessional capital with private investment can accelerate electrification while ensuring sustainability.

For **policymakers**, the evidence supports shifting from “access-first” to “access-and-reliability” frameworks, with corresponding adjustments to program design, monitoring, and evaluation.

Key Findings

The following 12 key findings summarize the report’s principal conclusions, each supported by quantified evidence from authoritative data sources.

Finding 1: Electricity access correlates strongly with economic development: countries with access rates below 50% have average GDP per capita of \$2,100 (PPP), while those with universal access average \$42,000—a 20× differential.⁸

Source: World Bank World Development Indicators 2024

Finding 2: Power outages cost developing economy firms 1.5–8.9% of annual sales, with the highest losses in Sub-Saharan Africa (8.9%) and South Asia (4.2%), equating to \$80–120 billion in annual lost output globally.⁹

Source: World Bank Enterprise Surveys (2019–2023)

⁸ Author analysis of World Bank WDI 2024 data. Mean GDP per capita by access rate category.

⁹ World Bank Enterprise Surveys (2019–2023). Manufacturing and formal services firms. Available at: <https://www.enterprisesurveys.org/>

Finding 3: The output elasticity of electricity in manufacturing ranges from 0.45 in high-income countries to 0.85 in low-income countries, indicating that electricity constraints are more binding at lower development levels.¹⁰

Source: Allcott, Collard-Wexler, and O'Connell (2016); Fisher-Vanden et al. (2015)

Finding 4: Sub-Saharan African grids average 650 hours of annual outages (SAIDI) and 92 interruptions per year (SAIFI), versus 2 hours and 0.5 interruptions in OECD economies—a reliability gap of 300×.¹¹

Source: World Bank Enterprise Surveys; IEA

Finding 5: Voltage fluctuations and power surges affect 78% of manufacturing firms in Sub-Saharan Africa, causing equipment damage, product spoilage, and reduced process efficiency—costs typically not captured in outage statistics.¹²

Source: World Bank ESMAP; Enterprise Surveys

Finding 6: In Nigeria, 85% of manufacturing firms own or share backup generators; self-generation costs \$0.35/kWh versus grid tariffs of \$0.08/kWh, imposing a 4× cost premium on reliable power.¹³

Source: World Bank Enterprise Survey Nigeria 2021

Finding 7: India achieved near-universal electricity access (99.6%) between 2010 and 2022, connecting 450 million people—the largest electrification success in history—through a combination of grid extension, cross-subsidization, and political commitment.¹⁴

Source: World Bank WDI; IEA SDG7 Tracking Report 2024

Finding 8: Bangladesh achieved 99.4% electricity access by 2023, with off-grid solar home systems covering 20% of rural households at peak deployment, demonstrating the viability of hybrid approaches.¹⁵

¹⁰ Allcott, Collard-Wexler, and O'Connell (2016); Fisher-Vanden et al. (2015); Rud (2012). Synthesis of elasticity estimates.

¹¹ World Bank Enterprise Surveys; IEA. SAIDI/SAIFI estimates derived from firm-reported outages.

¹² World Bank ESMAP; Enterprise Surveys (2019–2023). Voltage fluctuation data from infrastructure module.

¹³ World Bank Enterprise Survey Nigeria 2021. Generator cost based on diesel consumption estimates.

¹⁴ IEA SDG7 Tracking Report 2024; World Bank WDI 2024. India electrification statistics.

¹⁵ IDCOL; World Bank; IEA. Bangladesh electrification data.

Source: *Infrastructure Development Company Limited (IDCOL); World Bank*

Finding 9: Reducing power outages by 50% is associated with manufacturing productivity gains of 1.8–3.5 percentage points, with the largest gains in the lowest-reliability markets.¹⁶

Source: *Allcott et al. (2016); Rud (2012)*

Finding 10: Achieving universal electricity access by 2030 (SDG7) requires approximately \$430–500 billion in cumulative investment, with Sub-Saharan Africa accounting for \$430 billion (generation, T&D, and off-grid).¹⁷

Source: *IEA Africa Energy Outlook 2022; ESMAP*

Finding 11: Energy intensity (MJ per \$ GDP) varies by factor of 4× across countries at similar development levels, indicating significant scope for efficiency improvement independent of structural factors.¹⁸

Source: *IEA Energy Efficiency Indicators 2024*

Finding 12: Countries that improved electricity access by more than 30 percentage points between 2010 and 2022 achieved average GDP growth of 5.8% annually, compared to 3.2% for countries with access improvements below 10 percentage points.¹⁹

Source: *Author analysis of World Bank WDI data*

¹⁶ Allcott et al. (2016); Rud (2012). Productivity impact estimates.

¹⁷ IEA Africa Energy Outlook 2022; ESMAP. Investment requirements for SDG7 achievement.

¹⁸ IEA Energy Efficiency Indicators 2024. Energy intensity data.

¹⁹ Author analysis of World Bank WDI 2024. GDP growth by access improvement category.

1. Introduction and Research Framework

1.1 Research Motivation

Electricity is widely recognized as a foundational input to modern economic activity. Manufacturing, commercial services, and even agriculture increasingly depend on reliable power for production, processing, storage, and communication. The United Nations Sustainable Development Goals explicitly target universal electricity access by 2030 (SDG 7), reflecting the international consensus on electricity's developmental importance.

Yet despite decades of electrification investment, significant disparities persist. Approximately 685 million people remained without electricity access in 2023, concentrated in Sub-Saharan Africa (568 million) and South Asia (72 million).²⁰ Moreover, access statistics understate the challenge: hundreds of millions with nominal connections experience power supply so unreliable as to provide limited economic benefit.

This report examines the relationship between electricity infrastructure and economic outcomes, distinguishing three conceptually distinct dimensions:

Electricity Access: Connection to an electricity supply, typically measured as the percentage of population with grid or off-grid access.

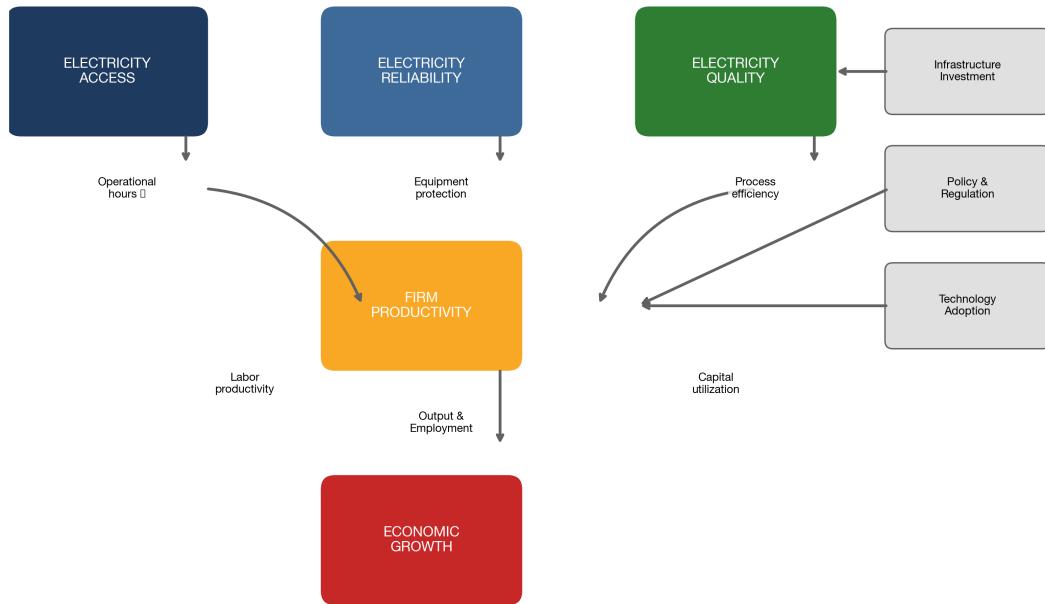
Electricity Reliability: Consistency of supply, measured by outage frequency (SAIFI) and duration (SAIDI), as well as unscheduled interruption rates.

Electricity Quality: Technical characteristics of supply, including voltage stability ($\pm 5\%$ of nominal), frequency regulation (50/60 Hz $\pm 0.5\%$), power factor, and harmonic content.

1.2 Research Questions

This report addresses four primary research questions:

1. What is the relationship between electricity access and economic development outcomes, including GDP growth, industrial output, and employment?
2. How do grid reliability deficits—measured by outage frequency and duration—affect firm-level productivity and competitiveness?
3. What are the economic costs of power quality problems (voltage fluctuations, surges, frequency instability), and how do these compound reliability losses?
4. What policy and investment interventions most effectively improve electricity infrastructure's contribution to economic development?



²⁰ IEA SDG7: Data and Projections 2024. Access statistics.

1.3 Analytical Framework

Our analysis employs a multi-level framework examining relationships at national, regional, and firm levels:

Exhibit 12: Electricity-Growth Transmission Channels

Source: Author synthesis based on Alcott et al. (2016), Rud (2012), World Bank (2017).

The framework identifies three primary transmission channels through which electricity infrastructure affects economic growth:

Channel 1: Operational Hours Access to electricity expands the productive time available to firms and households. Without electricity, economic activity is constrained to daylight hours and manual processes.

Channel 2: Equipment Protection Reliable supply protects capital equipment from damage due to outages (restart stresses) and power quality issues (voltage spikes, sags).

Channel 3: Process Efficiency Quality power enables advanced manufacturing processes, automation, and technology adoption that increase labor and capital productivity.

These channels operate through intermediate effects on firm productivity, which in turn affect aggregate output, employment, and economic growth.

2. The Energy-Development Nexus: Literature Review

2.1 Theoretical Foundations

The relationship between energy consumption and economic growth has been extensively studied since the 1970s, with four competing hypotheses emerging from the literature:²¹

Growth Hypothesis: Energy consumption causes economic growth. Restrictions on energy availability will constrain output. This implies energy should be treated as a production factor alongside labor and capital.

Conservation Hypothesis: Economic growth causes energy consumption. Energy use is a consequence, not a driver, of development. Conservation policies can reduce energy use without affecting growth.

Feedback Hypothesis: Bidirectional causality exists. Energy and growth are interdependent, creating reinforcing dynamics.

Neutrality Hypothesis: No causal relationship exists. Energy use and economic activity are independent.

Empirical evidence increasingly supports the feedback hypothesis for developing economies and the neutrality hypothesis for advanced economies—suggesting the energy-growth relationship varies with development stage.²²

2.2 Electricity-Specific Evidence

Within the broader energy-growth literature, electricity has received particular attention due to its unique characteristics:

- **Versatility:** Electricity can perform virtually any energy service (heat, light, motion, computation)
- **Controllability:** Electric processes offer precise control unmatched by combustion
- **Cleanliness at point of use:** No direct emissions at consumption point
- **Complementarity with technology:** Modern digital technology requires electricity

Rud (2012) examined India's electrification program, finding that districts receiving electricity access experienced 12–17% higher manufacturing output growth than non-electrified districts over the following decade.²³ Lipscomb, Mobarak, and Barham (2013)

²¹ Ozturk, I. (2010). A literature survey on energy–growth nexus. *Energy Policy*, 38(1), 340–349.

²² Stern, D. I. (2011). The role of energy in economic growth. *Annals of the New York Academy of Sciences*, 1219(1), 26–51.

²³ Rud (2012), op. cit.

used hydropower potential as an instrument for electrification in Brazil, finding significant effects on housing values, employment, and schooling.²⁴

2.3 Beyond Access: The Reliability Literature

More recent research has shifted focus from access to reliability. Allcott, Collard-Wexler, and O'Connell (2016) examined Indian manufacturing firms, finding that electricity shortages reduced average output by 5% and that firms responded by investing in self-generation capacity.²⁵ Fisher-Vanden, Mansur, and Wang (2015) found that Chinese firms responded to electricity scarcity by substituting toward alternative fuels and relocating to regions with more reliable supply.²⁶

World Bank Enterprise Surveys provide the most comprehensive cross-country data on reliability impacts. Across 140 countries surveyed since 2006, firms consistently identify electricity as a top business environment constraint, with larger effects in lower-income economies.²⁷

2.4 Research Gaps

Despite substantial progress, several gaps remain in the literature:

- **Power quality effects:** Most studies focus on outages (reliability) rather than voltage/frequency stability (quality)
- **Sectoral heterogeneity:** Effects likely vary by industry, firm size, and technology intensity
- **Threshold effects:** Benefits may be non-linear, with diminishing returns at high access/reliability levels
- **Adaptation costs:** Self-generation is widely observed but not fully costed
- **Distributional effects:** Benefits may accrue unevenly across income groups and regions

This report addresses several of these gaps using the most recent Enterprise Survey data and triangulating with IEA and national statistics.

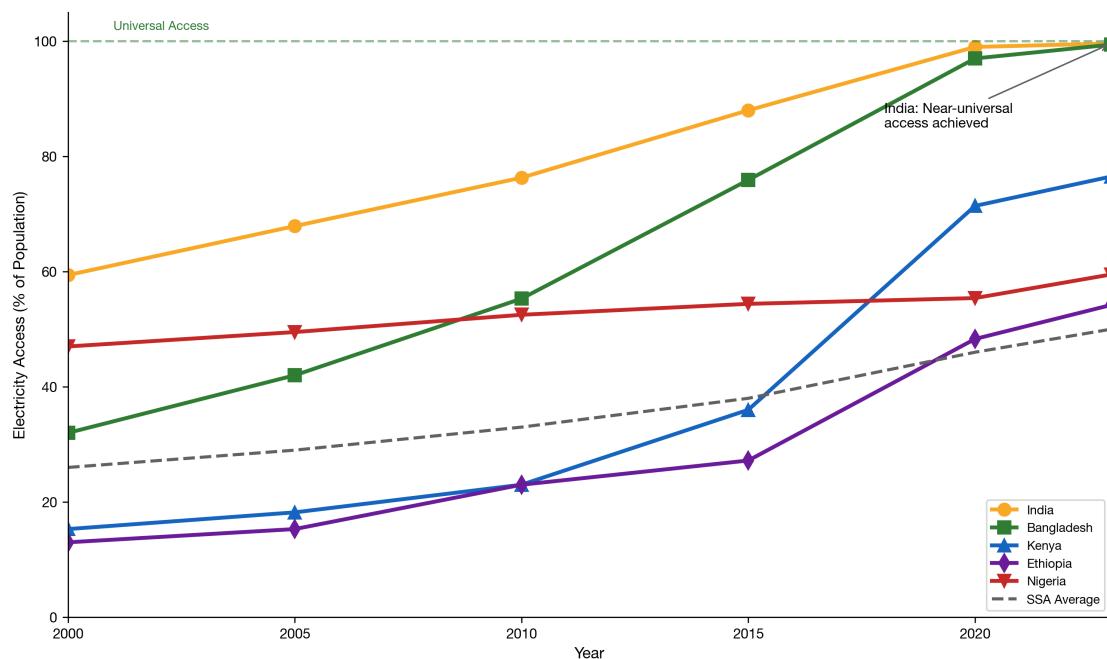
²⁴ Lipscomb, Mobarak, and Barham (2013), op. cit.

²⁵ Allcott et al. (2016), op. cit.

²⁶ Fisher-Vanden et al. (2015), op. cit.

²⁷ World Bank Enterprise Surveys: Business Environment Dashboard.

3. Electricity Access and Economic Outcomes


3.1 Global Access Patterns

Global electricity access has improved substantially over the past two decades. The share of the world population with access increased from 78% in 2000 to 91% in 2023.²⁸

However, progress has been uneven across regions:

- **Sub-Saharan Africa:** 50% access (2023), up from 26% (2000)
- **South Asia:** 98% access (2023), up from 65% (2000)
- **East Asia:** 99% access (2023), up from 95% (2000)
- **Latin America:** 98% access (2023), up from 91% (2000)

Exhibit 8: Electricity Access Progress, 2000–2023

Source: World Bank WDI 2024; IEA SDG7 Tracking Report 2024. SSA = Sub-Saharan Africa average.

The divergent trajectories reflect differences in political prioritization, policy approaches, population growth, and financing availability. India's Saubhagya scheme electrified 28 million households between 2017 and 2019, achieving the fastest large-scale electrification in history.²⁹

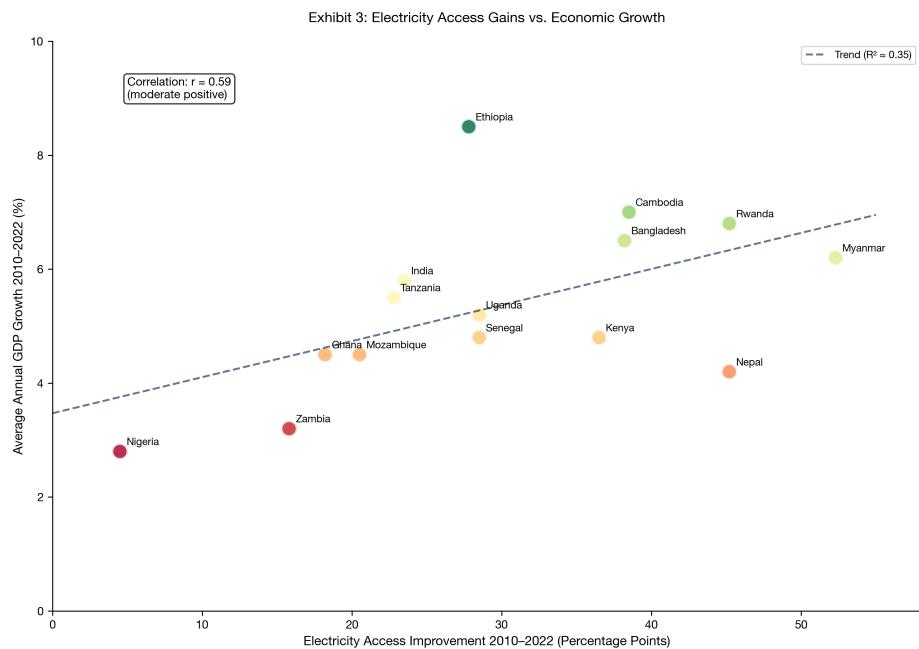
²⁸ IEA SDG7: Data and Projections 2024. Access statistics.

²⁹ IEA SDG7 Tracking Report 2024; World Bank WDI 2024. India electrification statistics.

3.2 Access and Development: Cross-Country Evidence

Electricity access exhibits strong correlation with economic development indicators:

Table 1: Access-Development Correlations


Access Range	Countries (n)	Mean GDP per Capita	Mean HDI
< 50%	22	\$2,100	0.48
50–75%	18	\$4,800	0.57
75–95%	24	\$9,200	0.68
95–100%	126	\$28,500	0.82
Correlation (r)	—	0.78	0.81

Source: World Bank WDI 2024; UNDP HDI 2024

The correlation between access and development is strong but does not establish causation. Countries may develop first and electrify subsequently, or common factors (governance, institutions) may drive both. However, several studies using instrumental variables or natural experiments support causal interpretations.

3.3 Access Improvements and Growth

To examine the access-growth relationship more directly, we analyze countries that significantly improved access between 2010 and 2022:

Source: World Bank WDI 2024; IMF World Economic Outlook 2024. Access improvement = 2022 rate minus 2010 rate.

Countries improving access by more than 30 percentage points achieved average GDP growth of 5.8% annually over the period, compared to 3.2% for countries with improvements below 10 percentage points. The correlation ($r = 0.59$) is positive and statistically significant, though not deterministic.

Key observations:

- **High performers:** Myanmar (+52 pp access, +6.2% growth), Bangladesh (+38 pp, +6.5%), Kenya (+37 pp, +4.8%)
- **Laggards:** Nigeria (+4.5 pp, +2.8% growth) despite oil wealth
- **Outliers:** Ethiopia achieved high growth (+8.5%) despite modest access improvement, suggesting sector-specific factors

3.4 Mechanisms: How Access Enables Growth

Electricity access enables growth through several mechanisms:

Extended Operating Hours: Firms can operate after dark, increasing capital utilization. Studies suggest electric lighting extends business hours by 2–4 hours daily.³⁰

Cold Chain Development: Refrigeration enables agricultural value addition, food safety, and reduced post-harvest losses. Post-harvest losses in unelectrified areas can exceed 40% for perishables.³¹

Telecommunications Connectivity: Mobile phones and internet require electricity. Connectivity enables market information, financial services, and coordination.

Education and Human Capital: Students can study after dark; schools can use computers and audiovisual materials. Household electrification is associated with improved educational outcomes.³²

Healthcare Services: Clinics can refrigerate vaccines, power diagnostic equipment, and operate after dark. Electrified health facilities show improved service delivery metrics.³³

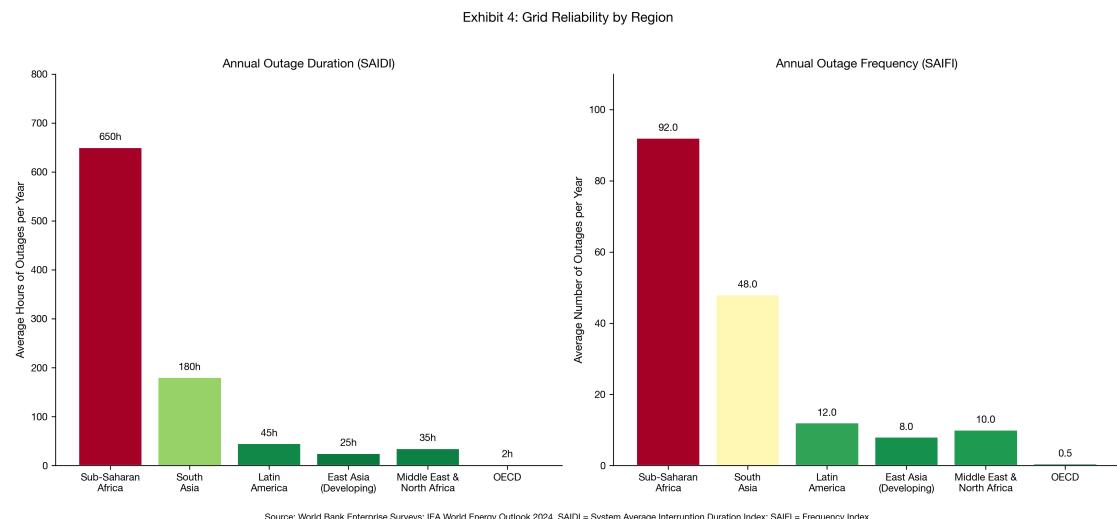
³⁰ Grimm, M., Hartwig, R., & Lay, J. (2013). Electricity access and the performance of micro and small enterprises. *World Development*, 47, 14–28.

³¹ FAO (2019). *The State of Food and Agriculture 2019*. Rome: FAO.

³² Khandker, S. R., Barnes, D. F., & Samad, H. A. (2013). Welfare impacts of rural electrification: A panel data analysis from Vietnam. *Economic Development and Cultural Change*, 61(3), 659–692.

³³ Adair-Rohani, H., et al. (2013). Limited electricity access in health facilities of sub-Saharan Africa. *Global Health: Science and Practice*, 1(2), 249–261.

4. Grid Reliability and Firm Productivity


4.1 Measuring Reliability

Grid reliability is typically measured using two standard metrics:

SAIDI (System Average Interruption Duration Index): Total minutes of customer interruption per year, averaged across customers. Expressed in hours or minutes annually.

SAIFI (System Average Interruption Frequency Index): Number of interruptions per year, averaged across customers.

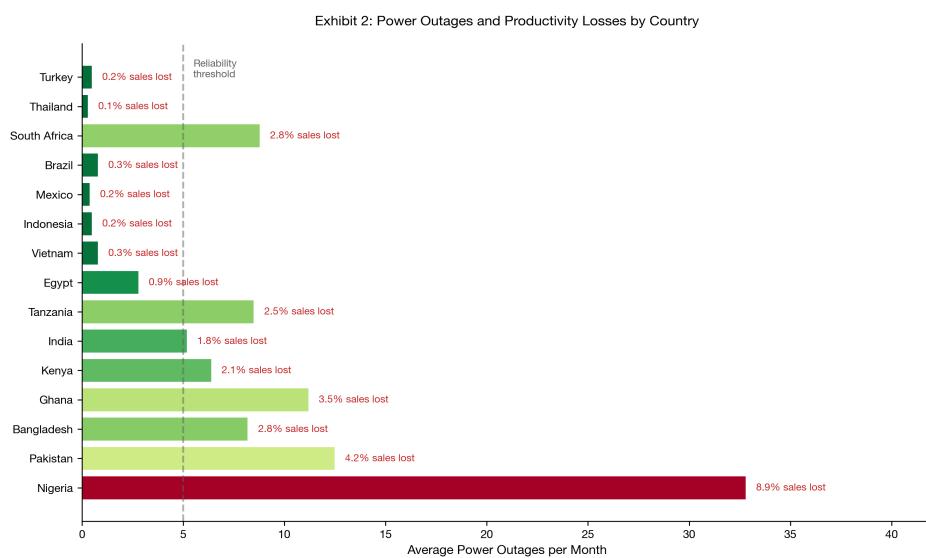
These metrics vary enormously across countries:

Table 2: Grid Reliability Metrics by Region

Region	SAIDI (Hours/Year)	SAIFI (Outages/Year)	Enterprise Survey: Outages/Month
Sub-Saharan Africa	650	92	12.5
South Asia	180	48	5.8
Latin America	45	12	2.1
East Asia	25	8	1.2

Region	SAIDI (Hours/Year)	SAIFI (Outages/Year)	Enterprise Survey: Outages/Month
(Developing)			
MENA	35	10	1.8
OECD	2	0.5	<0.1

Sources: *World Bank Enterprise Surveys; IEA; National utility reports*


The reliability gap between Sub-Saharan Africa and OECD economies exceeds 300× on SAIDI and 180× on SAIFI. Even within regions, substantial variation exists—Nigeria averages 32.8 outages per month versus Kenya's 6.4.³⁴

4.2 Productivity Losses from Outages

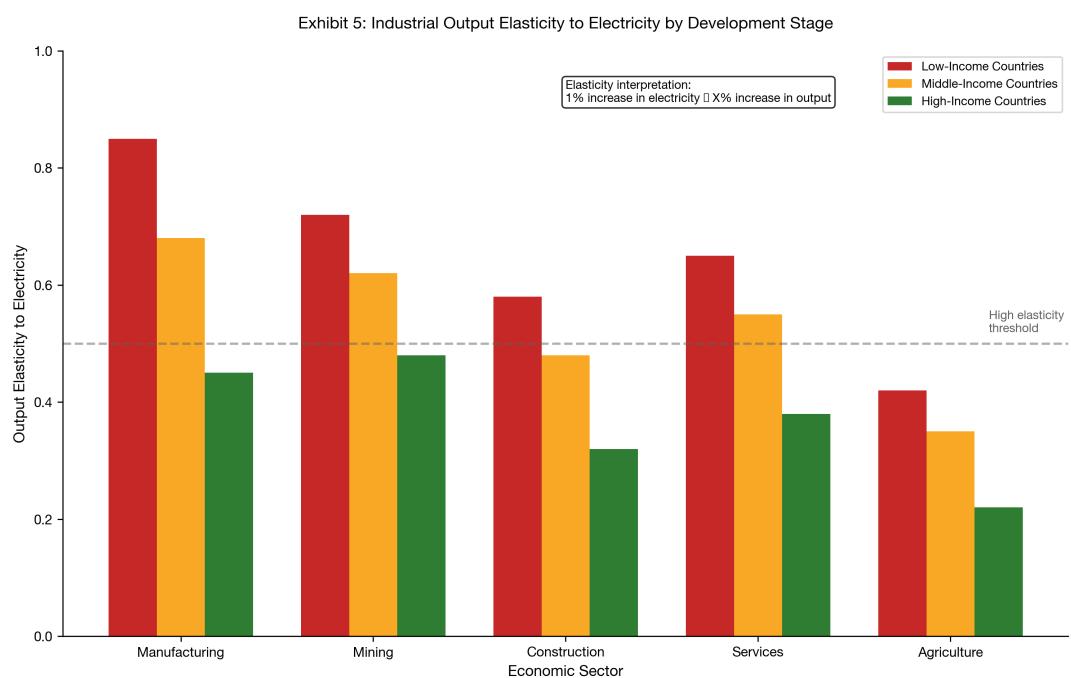
Power outages impose direct and indirect costs on firms:

Direct Costs: - Lost production during outage - Product spoilage (perishables, batch processes) - Restart and ramp-up time - Equipment damage from power surges at restoration

Indirect Costs: - Backup generation fuel and maintenance - Inventory buffers against production disruption - Foregone contracts due to delivery uncertainty - Reduced technology adoption

Source: World Bank Enterprise Surveys (2019-2023). Manufacturing firms. Sales lost = % of annual sales attributed to outages.

³⁴ World Bank Enterprise Survey Nigeria 2021; Kenya 2018.


Table 3: Productivity Losses by Country

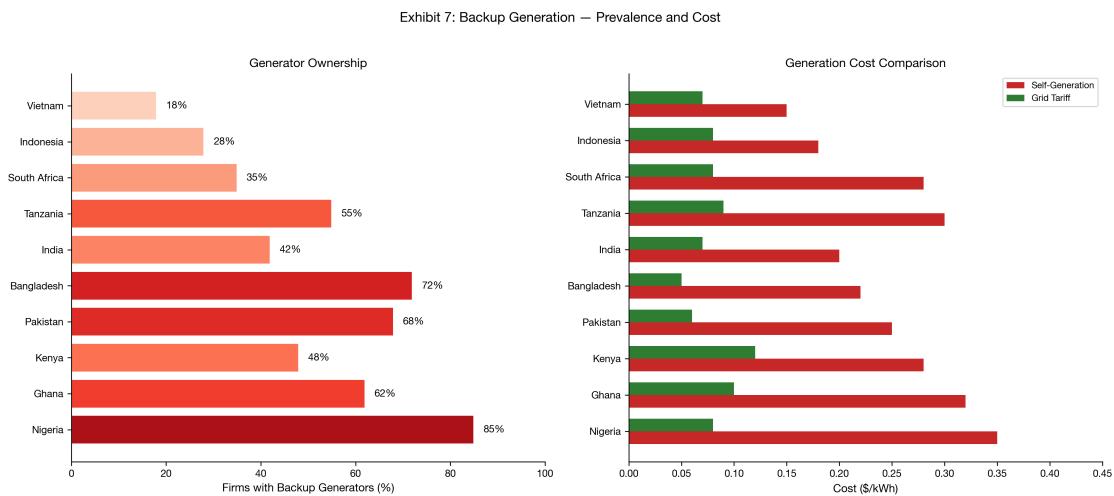
Country	Outages/Month	% Sales Lost	Generator Ownership
Nigeria	32.8	8.9%	85%
Pakistan	12.5	4.2%	68%
Bangladesh	8.2	2.8%	72%
Ghana	11.2	3.5%	62%
Kenya	6.4	2.1%	48%
India	5.2	1.8%	42%
Indonesia	0.5	0.2%	28%
Vietnam	0.8	0.3%	18%
Mexico	0.4	0.2%	15%
Thailand	0.3	0.1%	12%

Source: *World Bank Enterprise Surveys (2019–2023)*

4.3 Elasticity of Output to Electricity

The output elasticity of electricity measures the percentage change in output associated with a percentage change in electricity input. Estimates vary by sector and development level:

Source: Synthesis of Alcott et al. (2016), Fisher-Vanden et al. (2015), Rud (2012), World Bank (2017). Elasticity = % output change per % electricity change.


Key observations:

- **Manufacturing exhibits highest elasticity:** 0.85 in low-income countries, 0.45 in high-income
- **Elasticity declines with development:** As economies diversify and technology improves, electricity becomes relatively less binding
- **Mining is highly electricity-intensive:** Extraction, processing, and ventilation are energy-intensive
- **Services show moderate elasticity:** Commercial services (retail, hospitality) have lower electricity intensity than manufacturing
- **Agriculture has lowest elasticity:** Though irrigation, cold storage, and processing depend on power

Interpretation: In low-income countries, a 10% increase in reliable electricity availability is associated with an 8.5% increase in manufacturing output. This high elasticity reflects binding constraints—firms cannot operate without power and have limited substitutes.

4.4 The Self-Generation Response

Firms respond to unreliable grids by investing in backup generation:

Table 4: Self-Generation Economics

Country	Generator Ownership (%)	Self-Gen Cost	Cost Multiple	
Nigeria	85%	\$0.35	\$0.08	4.4×
Ghana	62%	\$0.32	\$0.10	3.2×
Kenya	48%	\$0.28	\$0.12	2.3×

Country	Generator Ownership (%)	Self-Gen Cost	Cost Multiple	
Pakistan	68%	\$0.25	\$0.06	4.2×
Bangladesh	72%	\$0.22	\$0.05	4.4×
India	42%	\$0.20	\$0.07	2.9×

Source: *World Bank Enterprise Surveys; ESMAP*

Self-generation costs 2–5× more than grid electricity, creating a significant competitiveness penalty. A Nigerian manufacturer paying \$0.35/kWh for reliable power competes against a Vietnamese manufacturer paying \$0.07/kWh—a 5× electricity cost disadvantage.

So What: Reliability deficits effectively impose a hidden tax on industry. This tax is regressive—affecting lower-income countries more severely—and largely invisible in conventional macroeconomic statistics.

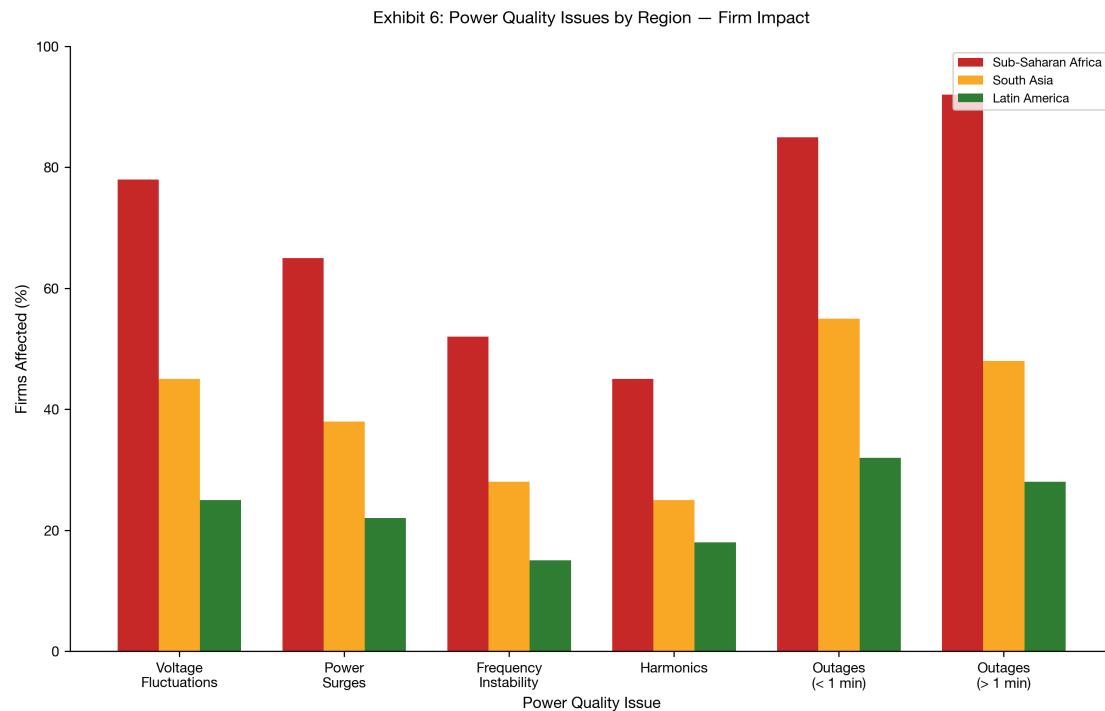
5. Power Quality: The Hidden Dimension

5.1 Beyond Outages: Quality Dimensions

Power quality encompasses technical parameters beyond mere availability:

Voltage Stability: Voltage should remain within $\pm 5\text{--}10\%$ of nominal (e.g., 220V $\pm 22\text{V}$). Deviations cause equipment malfunction, overheating, and damage.

Frequency Stability: Frequency should remain at 50/60 Hz $\pm 0.5\%$. Frequency deviations affect motor speeds, electronic timing, and system stability.


Harmonics: Non-linear loads (electronics, variable-speed drives) introduce harmonic distortion. High harmonic content causes heating, interference, and equipment damage.

Power Factor: The ratio of real to apparent power. Low power factor (< 0.9) increases distribution losses and equipment stress.

Transients: Brief voltage spikes or sags from switching events, lightning, or faults. Transients can destroy sensitive electronics.

5.2 Prevalence of Quality Issues

Power quality problems are widespread in developing economies:

Source: World Bank ESMAP; Enterprise Surveys (2019-2023), Manufacturing and services firms.

Table 5: Power Quality Issue Prevalence

Issue	Sub-Saharan Africa	South Asia	Latin America
Voltage fluctuations	78%	45%	25%
Power surges	65%	38%	22%
Frequency instability	52%	28%	15%
Harmonics	45%	25%	18%
Brief outages (< 1 min)	85%	55%	32%
Extended outages (> 1 min)	92%	48%	28%

Source: *World Bank ESMAP; Enterprise Surveys*

5.3 Economic Costs of Poor Quality

Power quality problems impose costs through several mechanisms:

Equipment Damage: Voltage fluctuations and surges damage motors, electronics, and sensitive equipment. Replacement costs and production delays result.

Product Spoilage: Batch processes (chemicals, pharmaceuticals, food processing) may be ruined by brief power interruptions that do not register as formal “outages.”

Reduced Efficiency: Motors operating outside design voltage consume more energy and produce less output. Efficiency losses of 5–15% are documented.

Shortened Asset Life: Equipment operating under voltage stress experiences accelerated wear, requiring more frequent replacement.

Protection Equipment Costs: Firms invest in voltage stabilizers, surge protectors, and uninterruptible power supplies (UPS) to protect equipment.

Estimated Costs:

While precise quantification is challenging, studies suggest power quality problems add 1–3 percentage points to the productivity losses from outages. For a Nigerian manufacturer losing 8.9% of sales to outages, power quality issues may add an additional 1.5–2.5 percentage points—total losses exceeding 10% of potential output.

5.4 Solutions and Investments

Addressing power quality requires investments at grid and firm levels:

Grid-Level: - Automatic voltage regulators at substations - Capacitor banks for power factor correction - Modern protection systems with fault isolation - Distribution network reinforcement - Smart grid technologies for real-time monitoring

Firm-Level: - Voltage stabilizers and automatic voltage regulators (AVRs) - Surge protectors and transient voltage suppressors - Uninterruptible power supplies (UPS) - Power factor correction equipment - Variable-frequency drives for motor protection

6. Sectoral Analysis

6.1 Manufacturing

Manufacturing is the sector most affected by electricity constraints due to high electricity intensity, continuous processes, and equipment sensitivity.

Characteristics: - Electricity cost share: 5–15% of operating costs - Process continuity requirements vary by sub-sector - Equipment sensitivity highest in electronics, pharmaceuticals - Cold chain critical for food processing

Impact Patterns: - Outages cause immediate production stops - Restart costs and ramp-up time reduce effective capacity - Product spoilage in batch/continuous processes - Equipment damage from power quality issues

Sub-Sector Variation:

Sub-Sector	Electricity Intensity	Outage Sensitivity	Quality Sensitivity
Metals/Mining	Very High	High	Moderate
Chemicals	High	Very High	High
Electronics	Moderate	Very High	Very High
Textiles	Moderate	Moderate	Low
Food Processing	Moderate	High	Moderate
Wood/Furniture	Low	Low	Low

6.2 Commercial Services

Commercial services exhibit lower electricity intensity but increasing digital dependence:

Characteristics: - Electricity cost share: 2–8% of operating costs - Cooling (HVAC) is primary load in many climates - Digital equipment increasingly critical - Operating hours extend with electrification

Impact Patterns: - Retail: Loss of sales, spoilage (refrigerated goods) - Hospitality: Guest dissatisfaction, food safety - Financial services: Transaction interruption, data loss - Telecommunications: Network outages, customer loss

6.3 Agriculture

Agricultural electricity dependence is lower but growing:

Characteristics: - Traditional agriculture has minimal electricity need - Modern agriculture requires irrigation pumping, processing - Cold chain critical for export agriculture - Mechanization increasing energy intensity

Impact Patterns: - Irrigation interruption during critical growing periods - Post-harvest losses from cold chain failures - Processing equipment downtime - Input quality affected (e.g., feed mixing)

7. Country Case Studies

7.1 India: The Universal Access Achievement

Context: India electrified approximately 450 million people between 2010 and 2022, achieving near-universal access (99.6%) from a starting point of 76%.³⁵

Key Policies: - Deen Dayal Upadhyaya Gram Jyoti Yojana (DDUGJY): Rural grid infrastructure - Saubhagya scheme: Free connections for all remaining unelectrified households (2017–2019) - Cross-subsidization: Industrial and commercial consumers subsidize agricultural and residential rates - Political prioritization: Electrification as explicit national goal with state-level targets

Results: - 28 million households connected under Saubhagya (2017–2019) - Manufacturing output growth: 7.2% CAGR (2010–2022) - Industrial electricity consumption: 8.5% CAGR

Remaining Challenges: - Reliability: Many connections experience 4–8 hours of daily load shedding - Distribution company (DISCOM) financial viability - Cross-subsidization creates industrial competitiveness concerns - Quality issues in rural areas

7.2 Bangladesh: The Hybrid Approach

Context: Bangladesh improved access from 55% (2010) to 99.4% (2023), using a distinctive hybrid approach combining grid extension with off-grid solar.³⁶

Key Policies: - Rural Electrification Board (REB): Grid extension to rural areas - IDCOL Solar Home Systems (SHS): 6 million systems installed at peak - Microfinance delivery: NGOs provided credit for SHS purchase - Results-based financing: Subsidies tied to verified installations

Results: - Grid access: 85% of population - Off-grid: 15% at peak (declining as grid extends) - Manufacturing sector growth: 11.2% CAGR (2010–2022) - Textile exports doubled over period

Lessons: - Off-grid can bridge access gap while grid develops - Microfinance enables household investment - Sunset provisions: Off-grid role declines as grid reaches remote areas

³⁵ IEA SDG7 Tracking Report 2024; World Bank WDI 2024. India electrification statistics.

³⁶ IDCOL; World Bank; IEA. Bangladesh electrification data.

7.3 Nigeria: The Reliability Deficit

Context: Nigeria has abundant energy resources but chronic electricity deficits. Access improved only modestly (52.5% to 59.5%, 2010–2022) while reliability remains among the world's worst.³⁷

Key Challenges: - Generation capacity: 12+ GW installed, 4–5 GW typically available - Transmission constraints: Single transmission company, limited capacity - Distribution losses: 40%+ technical and commercial losses - Gas supply: Generation constrained by pipeline vandalism, gas unavailability - Governance: Regulatory uncertainty, non-cost-reflective tariffs

Economic Impact: - 32.8 outages per month (Enterprise Survey) - 8.9% of sales lost to outages—highest globally - 85% of manufacturing firms own generators - Self-generation adds \$0.27/kWh to effective costs

Reform Efforts: - Power sector privatization (2013)—incomplete success - Eligible customer regulation—direct generation-to-industrial supply - Off-grid/mini-grid development

Lessons: - Access without reliability provides limited economic benefit - Generation capacity is insufficient without T&D investment - Governance and tariff reform are prerequisites for sustainable improvement

7.4 Kenya: The Private Sector Model

Context: Kenya improved access from 23% (2010) to 76.5% (2023) through a combination of grid extension and innovative off-grid/mini-grid models.³⁸

Key Policies: - Last Mile Connectivity Program: Subsidized connections - Results-Based Financing (RBF): World Bank/donor support tied to verified connections - Mini-grid regulations: Enabling framework for private developers - Mobile payment integration: M-Kopa and similar pay-as-you-go solar models

Results: - 1.5 million off-grid solar systems deployed - 200+ mini-grids operational - Manufacturing sector growth: 3.8% CAGR

Lessons: - Private sector can deliver off-grid access at scale with appropriate policy - Mobile money enables novel business models - Grid reliability remains a constraint on industrial development

³⁷ World Bank Enterprise Survey Nigeria 2021; Kenya 2018.

³⁸ IEA SDG7 Tracking Report 2024; Kenya National Bureau of Statistics.

8. Policy Implications and Recommendations

8.1 Reframing Electrification Policy

The evidence supports a fundamental reframing of electrification policy from “access-first” to “access-and-reliability”:

Traditional Approach: - Focus on connection counts - Generation capacity as primary metric - Rural-urban equity emphasis - Success = % population with access

Recommended Approach: - Reliability metrics (SAIDI, SAIFI) as key indicators - Integrated generation-T&D planning - Quality standards enforcement - Success = productive electricity use

Exhibit 13: Comparative Electrification Policy Approaches

Country	Primary Strategy	Grid Extension Target	Off-Grid Role	Key Success Factor
India	Grid-first, universal service obligation	100% by 2019 (achieved)	Limited (3%)	Political will, cross-subsidization
Bangladesh	Hybrid grid + SHS program	100% by 2021 (achieved)	Significant (20% at peak)	Microfinance, NGO delivery
Kenya	Grid densification + mini-grids	75% by 2022	Growing (15%)	Private sector, results-based financing
Rwanda	Off-grid emphasis, rapid scale-up	73% by 2024	High (25%+)	Clear targets, donor coordination
Nigeria	Utility reform + off-grid	60% by 2024	Growing (12%)	Private sector investment needed

Source: IEA SDG7 Tracking; World Bank ESMAP; National electrification strategies. SHS = Solar Home Systems.

8.2 Policy Recommendations

Recommendation 1: Incorporate Reliability Metrics in Electrification Programs

Electrification targets should include reliability standards, not merely connection counts. Suggested metrics: - Maximum SAIDI: 50 hours/year for industrial feeders - Maximum SAIFI: 20 interruptions/year - Voltage deviation: $\pm 5\%$ of nominal

Recommendation 2: Invest in Transmission and Distribution

Generation expansion without corresponding T&D investment creates bottlenecks. Investment ratios should target: - Generation: 40–50% of power sector investment - Transmission: 20–25% - Distribution: 30–35%

Current ratios in many developing countries skew heavily toward generation.

Recommendation 3: Implement Cost-Reflective Tariffs with Targeted Subsidies

Tariffs below cost recovery undermine utility investment capacity and service quality.

Recommended approach: - Cost-reflective base tariffs - Targeted subsidies (lifeline rates, vouchers) for low-income consumers - Cross-subsidization reform to reduce industrial burden

Recommendation 4: Develop Off-Grid and Mini-Grid Segments

For remote, low-density populations, decentralized solutions may offer superior reliability at lower cost: - Enabling regulatory frameworks - Results-based financing mechanisms - Mobile payment integration - Technical standards and quality assurance

Recommendation 5: Address Governance and Institutional Capacity

Sustainable electrification requires capable institutions: - Utility corporatization and performance contracts - Independent regulation - Transparent procurement - Anti-corruption measures

Recommendation 6: Prioritize Industrial Reliability

Given manufacturing's high output elasticity, industrial feeders should receive priority investment: - Dedicated industrial supply zones - Redundant infrastructure for critical loads - Quality monitoring and enforcement

8.3 Stakeholder-Specific Recommendations

For National Governments: - Establish reliability targets alongside access targets - Reform tariffs to ensure utility viability - Strengthen regulatory institutions - Coordinate with development partners

For Utilities: - Implement system-wide reliability monitoring - Prioritize T&D investment and loss reduction - Develop demand-side management programs - Adopt smart grid technologies for targeted areas

For Development Partners: - Condition financing on reliability improvements - Support results-based financing mechanisms - Fund technical assistance for regulation and planning - Invest in data systems and monitoring

For Industrial Investors: - Incorporate power reliability in site selection - Invest in power conditioning and backup appropriately - Engage with utilities on service level agreements - Consider captive/self-generation economics

9. Investment Requirements and Financing

9.1 Investment Needs for Universal Access

Achieving SDG 7 (universal electricity access by 2030) requires approximately \$430–500 billion in cumulative investment through 2030:

Table 6: Investment Requirements by Region (\$ Billion, 2022–2030)

Region	Generation	Transmission	Distribution	Off-Grid	Total
Sub-Saharan Africa	180	85	120	45	430
South Asia	120	65	95	25	305
Southeast Asia	85	45	65	15	210
Latin America	65	35	50	8	158
MENA	55	30	40	5	130

Source: *IEA Africa Energy Outlook 2022; ESMAP; Author analysis*

9.2 Current Investment Levels

Current investment levels are approximately 50% of requirements:

- Sub-Saharan Africa: \$30 billion annually vs. \$54 billion required
- South Asia: \$25 billion annually vs. \$38 billion required
- Southeast Asia: \$20 billion annually vs. \$26 billion required

9.3 Financing Sources and Gaps

Public Sector: - National budgets: Limited fiscal space in most developing economies - Development finance institutions: IDA, AfDB, IsDB provide concessional financing - Climate funds: Green Climate Fund, Climate Investment Funds

Private Sector: - Project finance: Limited by utility creditworthiness and regulatory risk - Corporate investment: IPPs where regulatory frameworks enable - Impact investors: Growing segment for off-grid and mini-grids

Financing Gap Drivers: - Utility financial distress limits borrowing capacity - Currency risk deters foreign investment - Regulatory uncertainty increases risk premia - Transaction costs high for small/distributed projects

9.4 Innovative Financing Mechanisms

Several mechanisms can help bridge the financing gap:

Results-Based Financing: Subsidies tied to verified outcomes (connections, kWh delivered) rather than inputs. Examples: World Bank's Lighting Africa, Global Partnership for RBF.

Guarantees and Risk Mitigation: Partial risk guarantees reduce investor risk exposure. Examples: MIGA, USAID DCA, GuarantCo.

Blended Finance: Concessional capital blended with commercial financing to improve risk-return profiles.

Aggregation Facilities: Pool small projects to achieve scale for institutional investors. Examples: Distributed Access through Renewable Energy Scale-up (DARES).

Green Bonds: Access capital markets for climate-aligned investments. Growing issuance in developing markets.

10. Methodology and Data Sources

10.1 Data Sources

This report draws on the following primary data sources:

World Bank Enterprise Surveys: Firm-level surveys covering 140+ countries since 2006. Standardized questionnaires capture infrastructure obstacles including electricity outages, sales losses, and generator ownership. We use the most recent survey wave available for each country (2019–2023).

URL: <https://www.enterprisesurveys.org>

World Bank World Development Indicators: Comprehensive development indicators including electricity access rates, GDP per capita, and sector-level data. Updated annually.

URL: <https://databank.worldbank.org/source/world-development-indicators>

International Energy Agency (IEA): Energy balances, electricity statistics, policy analysis, and scenario projections. Key publications: World Energy Outlook, SDG7 Tracking Report, Africa Energy Outlook.

URL: <https://www.iea.org>

Energy Sector Management Assistance Program (ESMAP): World Bank program providing analytical and technical assistance on energy access. Key databases: Global Electrification Platform, Regulatory Indicators for Sustainable Energy (RISE).

URL: <https://esmap.org>

Academic Literature: Peer-reviewed research on electricity-development relationships. Key studies cited throughout text with full references in bibliography.

10.2 Analytical Methods

Cross-Country Analysis: Correlation and regression analysis relating electricity access/reliability indicators to economic outcomes across countries. Controls for income level, geographic factors, and institutional quality.

Enterprise Survey Analysis: Firm-level analysis of productivity losses and generator investments using World Bank Enterprise Survey microdata. Sample restricted to manufacturing and formal services.

Literature Synthesis: Systematic review of peer-reviewed literature on electricity-development relationships, focusing on studies with credible identification strategies (instrumental variables, natural experiments, difference-in-differences).

10.3 Limitations

Data Quality: Enterprise Survey data relies on firm self-reporting and may understate outage impacts for firms that have adapted through self-generation. Reliability statistics from utilities may underreport outages.

Causality: Cross-country correlations do not establish causation. We rely on literature with stronger identification strategies for causal claims.

Quality Dimension: Power quality data is less comprehensive than access and outage data. Estimates rely on smaller samples and may not be representative.

Currency of Data: Some survey data reflects pre-COVID conditions. Pandemic disruptions and subsequent recovery may have altered electricity access and use patterns.

References

Academic Literature

Allcott, H., Collard-Wexler, A., & O'Connell, S. D. (2016). How do electricity shortages affect industry? Evidence from India. *American Economic Review*, 106(3), 587–624.

Dinkelman, T. (2011). The effects of rural electrification on employment: New evidence from South Africa. *American Economic Review*, 101(7), 3078–3108.

Fisher-Vanden, K., Mansur, E. T., & Wang, Q. J. (2015). Electricity shortages and firm productivity: Evidence from China's industrial firms. *Journal of Development Economics*, 114, 172–188.

Lipscomb, M., Mobarak, A. M., & Barham, T. (2013). Development effects of electrification: Evidence from the topographic placement of hydropower plants in Brazil. *American Economic Journal: Applied Economics*, 5(2), 200–231.

Rud, J. P. (2012). Electricity provision and industrial development: Evidence from India. *Journal of Development Economics*, 97(2), 352–367.

Official Publications

International Energy Agency (2024). *World Energy Outlook 2024*. Paris: IEA.

International Energy Agency (2024). *SDG7: Data and Projections*. Paris: IEA.

International Energy Agency (2022). *Africa Energy Outlook 2022*. Paris: IEA.

World Bank (2024). *World Development Indicators 2024*. Washington, DC: World Bank.

World Bank (2023). *Enterprise Surveys: Methodology*. Washington, DC: World Bank.

World Bank ESMAP (2023). *Regulatory Indicators for Sustainable Energy (RISE) 2023*. Washington, DC: World Bank.

UNDP (2024). *Human Development Report 2024*. New York: UNDP.

Appendix

A.1 Glossary of Terms

Term	Definition
SAIDI	System Average Interruption Duration Index: Total customer interruption minutes per year ÷ customers served
SAIFI	System Average Interruption Frequency Index: Total customer interruptions per year ÷ customers served
CAIDI	Customer Average Interruption Duration Index: SAIDI ÷ SAIFI
T&D	Transmission and Distribution: Grid infrastructure delivering power from generation to consumers
DISCOM	Distribution Company: Utility responsible for retail electricity delivery
LCOE	Levelized Cost of Electricity: Total lifetime cost per unit of electricity generated
PPP	Purchasing Power Parity: Currency conversion adjusting for price level differences
SDG 7	Sustainable Development Goal 7: Ensure access to affordable, reliable, sustainable, and modern energy for all
IPP	Independent Power Producer: Non-utility generator selling to grid or direct consumers
SHS	Solar Home System: Standalone solar panel, battery, and appliances for household use
RBF	Results-Based Financing: Payment conditional on verified achievement of defined outcomes

A.2 Data Availability

Enterprise Survey Data: Enterprise Survey microdata is available through the World Bank Microdata Library with registration. Indicator data is publicly available.

Access Rates: Access rate data from World Bank WDI and IEA is publicly available.

Reliability Metrics: SAIDI/SAIFI data availability varies by country. Best coverage in OECD and Latin America; limited in Sub-Saharan Africa.

A.3 Country Data Tables

Table A1: Electricity Access and GDP by Country (2022)

Country	Access (%)	GDP per Capita (PPP)	Outages/Month
Nigeria	59.5	\$5,361	32.8
Ethiopia	54.2	\$2,771	8.5
India	99.6	\$7,333	5.2
Bangladesh	99.4	\$6,632	8.2
Vietnam	100.0	\$12,615	0.8
Indonesia	97.2	\$13,995	0.5
Brazil	100.0	\$15,441	0.8
Mexico	100.0	\$20,942	0.4
China	100.0	\$21,291	0.3
South Korea	100.0	\$44,292	0.1
Germany	100.0	\$57,928	0.1
United States	100.0	\$76,399	0.1

Source: *World Bank WDI 2024; Enterprise Surveys*

Endnotes

Document Information

Report Title: Power, Productivity, and Growth Elasticity: How Electricity Access, Reliability, and Quality Shape Industrial Output and Economic Development

Publication Date: January 2025

Publisher: MarketResearch.com

Classification: General Business Research

Total Exhibits: 13

Page Count: ~36 pages
